

Jenesien

Integration of Traffic and Environmental data for improving green policies in the city of Bolzano

Bozen - Bolzano

Wolfgang Ponweiser and Reinhard Kloibhofer

AIT – Austrian Institute of Technology

Bolzano, 26/06/2012 1st International Workshop

Austrian Industry

AIT Austrian Institute of Technology

Seibersdorf Labor GmbH GmbH

Energy Mobility Safety & Security

Health & Environment

Foresight & Policy Development

- BMVIT 50.46%
- Industry 49.54%

The mobile sub-system of INTEGREEN

Use case 1: Traffic state estimation in the city of Bolzano

- Traffic state / information
 - Static / dynamic / real-time
 - Decision support for the operator of the traffic management centre
 - Redistribution of traffic information to the drivers
- Reduction of infrastructure expenses
 - Enhancing traffic stationary sensors
 - Probes measure at the 'major' roads
- Several probe vehicles
 - INTEGREEN project probes, municipality of Bolzano, ...
 - Existing fleets (taxi, busses, ...)
 - Network coverage

Use case 2: Air quality state estimation in the city of Bolzano

- Information support of the TMC
 - Provide combined traffic AND air quality information
 - Reduction of traffic based emissions
 - By means of traffic related actions
- Air quality measurement
 - Enhancing stationary sensors
 - Area-wide coverage beyond the fixed stations
- Mobile collection of pollution and meteorological data
 - Equip probe vehicles with dedicated sensors
 - Evaluation of existing sensors
 - Implementation of a sensing system

Use Case 3: Estimation of emissions caused by motorized individual transport in the city of Bolzano

- Monitoring of traffic based emissions
 - Acquisition of the current state
 - Determination of trends
 - Spatial distribution
 - Evaluation of (traffic) measures
- Measurement of emissions of all vehicles is practically impossible
 - <- equipped with a measurement unit
- Mobile collection of pollution and meteorological data
 - Equip probe vehicles with dedicated sensors
 - Evaluation of existing sensors
 - Implementation of a sensing system

Interpretation of mobile sensing data: Single mobile probe measurement → useful information

Traffic

- Traffic state
 e.g. free flow, slow-moving,
 stop & go, congested
- Traffic information
 e.g. travel time, routing, ...
- Incident detection
 e.g. accident, congestion,
 event, construction site, ...

Air quality

Later on

Pan, Shuliang; et. al. 2011

Bolzano, 26/06/2012 1st International Workshop

Mobile System

Architecture (1/2)

Mobile System

Architecture (2/2)

- Main Characteristics:
 - On-Board Unit
 - On-Board Traffic Unit
 - On-Board Environment Unit
 - On-Board Data Processing Unit
 - On-Boad HMI
 - Plug&Play
 - Expandable & Flexible
 - Data Processing Unit with standard and future Wireless Communication System
 - Meets Automotive Requirements

Traffic Unit:

- Planned functionalities:
 - CAN-Bus access (where possible)
 - GPS sensor
 - Position and heading sensor
 - USB-Connection
 - Generation of timestamps

Environment Unit:

- Planned functionalities:
 - Pollution candidates:
 - NO₂
 - CO
 - PM10 (opt.)
 - Air inlet possibly distant from road surface
 - Air flow controll

Communication Unit:

- Candidate Technologies:
- GSM/GPRS (2G)
 - Good and global infrastructure
 - Bidirectional communication
 - With GPRS 40kkbit/s upload rate
- UMTS (3G)
 - "Upgrade" of GSM for higher data rates
 - Different air-interface
 - Good and global infrastruture
 - Data rates of up to 384kbit/s
 - Upgrade options with higher data rates possible

- CALM (Communications access for land mobiles)
 - Common architecture, network protocol and air interfaces
 - IR... infrared air interface
 - MM...milimeter wave air interface
 - 802.11p... dedicated C2C, C2I air interface
 - Infrastructure to be built in the future

Challenges in Integreen:

Large Mobile Solutions versus Plug&Play

Challenges in Integreen:

- Large Mobile Solutions versus Plug&Play
 - Solid State Sensors examples
 - Ad-hoc design required
 - Automotive environment use
 - Suitable for PT or fleet vehicles

AIT Demo Vehicle for Integreen:

- Dedicated to project
- Customisable for INTEGREEN
- CAN-bus access
- Measurement campaign

Side-Impact AIT stereo sensor (Fiat Torino)

Wireless Pedestrian Detection Test (AIT Vienna)

Collision Avoidance Demo (Test Track Fiat Torino)