

Jenesien

The INTEGREEN mobile system for traffic and environmental monitoring

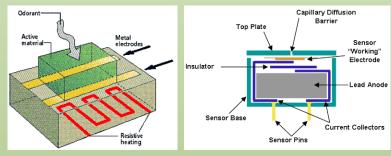
Bozen - Bolzano

2nd INTEGREEN workshop 24/06/2014

Outline

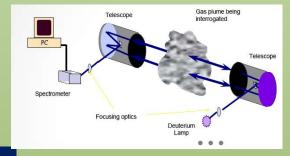
Table of contents

- Environmental sensors
- Traffic and environmental monitoring systems
- Tests and calibration
- Field measurements
- Further deployment
- Summary


Environmental sensors

Evaluation of mobile air pollution sensing techniques:

- Chemo-resistive MOX: based on variations of sensor resistivity
- Electrochemical sensors: active measurement principle (gas oxidation / reduction)
- Optical gar sensors: measurement of the impact that gas have on light absorption



Evaluation based on different specifications, in particular: response time, non-linearity, zero drift and cross-sensitivity

Souce: University of Siena

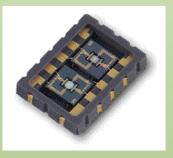
Souce: equipcoservices.com

Souce: DUVAS

Environmental sensors

Air pollution sensor selection

• Nitron dioxide (NO₂):

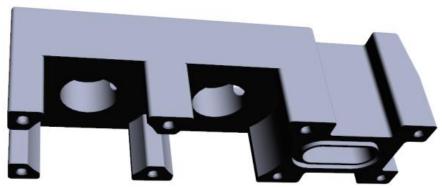

□ NO₂ (Alphasense) – electrochemical sensor

- \Box NO₂ (SGX) MOX sensor
- **Ozone** (O₃):

□ O₃ (Alphasense) – electrochemical sensor

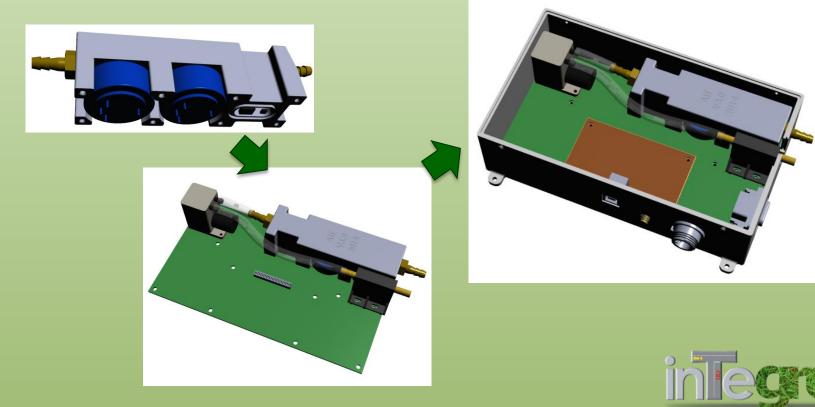
• Carbon monoxide (CO):

□ CO (SGX) – MOX sensor



Components detailed design

- Analog-to-digital converter (sensors are analogue)
- Temperature and humidity sensors
- Sensor Control Unit (data reading and communication with on-board telematic unit)
- GPS receiver
- Ad-hoc air guide



Components detailed design

- Most of the design choices replicated for the on-board traffic unit as well.
- Integration and selection of precise accelerometers: this will allow to make specific measurement campaign on the correlation between fuel consumption and driving parameters.
- An interface is available with the **CAN-Bus network** in order to collect the available vehicular data as well.

- The core «engine» of the mobile system:
 - Receives the data from the monitoring units
 - □ Pre-processing of the raw measurements
 - Remote data transmission to the vehicle front-end
- Detailed design activities:
 - **PC** Car selection
 - Real-time interface to the on-board sensors
 - Local data management and communication system

Powerfulunitthatsupportsadvancedtelematic applications

- Two types of HMIs are going to be considered:
 - «Professional» HMI for detailed testing and valitation purposes
 - General purpose» HMI to be easily used by generic test drivers. Simply one of the applications (e.g. BZTraffic) optimized for driving conditions.

• Mobile system first prototype available

- Electronic design phase.
- PCB layout design and production
- Component purchase
- Electronic components mounting
- □ Labelling and testing of the mounted PCBs
- □ Final housing and integration

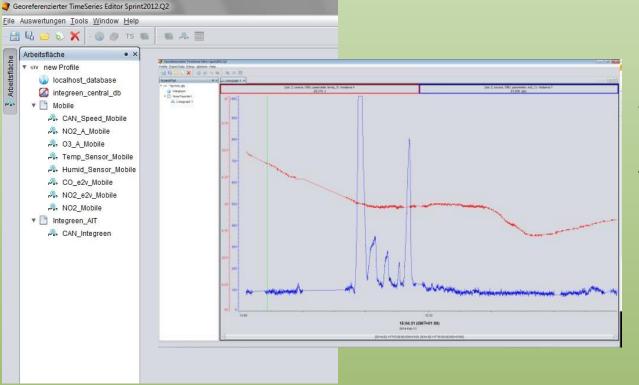
• On-board monitoring units

On-board traffic monitoring unit

On-board environmental unit

On-board HMI

Detailed evaluation of the real-time measurements gathered by the two on-board monitoring units


	UART2Net - Traffic.bat - Shortcut
ł	+++++++++ Packet 1380 GPS Time: 0000/00/00 00:00:00.00 GPS Pos: 0.0000000 / 0.0000000 / 0.00m
; ;	IMU1: Accel46/-19/-3042 IMU1: Gyro12/-3/52 IMU2: Magnet -80/100/-452 (0xFFB0/0x0064/0xFE3C) CAN: WAngle: -10000 CAN: Yaw: 0
5	CAN: Yaw: 0 CAN: Speed: 0.00 km/h CAN: WSpeed: -100.00/-100.00/-100.00/-100.00 km/h CAN: Fuel: 0.00 ml CAN: Fuel Consumption: 1/100km
) 	CAN: AmbientTemp: 0.00 C Humidity: 39.22% / 33.00 C Speed IMU1: 0.00 - CAN: 0.00 ++++++++
5	UART2Net - Env.bat - Shortcut

On-board HMI

Graphical visualization of the measurements trends, immediate assessment of the mobile system performance

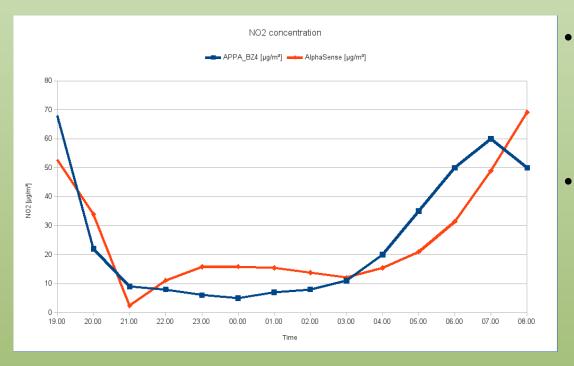
Joint component test session

Verification of the entire communication chain

Verification of the performance of the mobile system (and XFCD data analyzer)

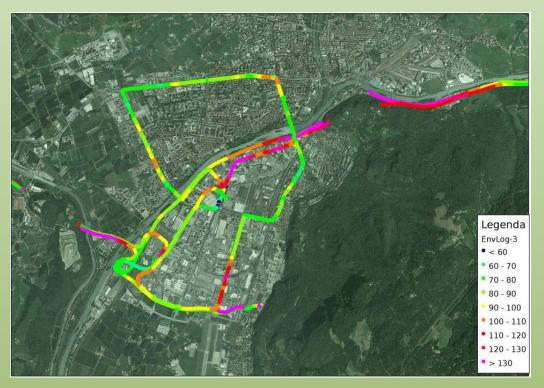
Joint component test session

Different use cases analyzed: static measurements near official air quality stations; mobile measurements on the reference test route and in harsh environments, including the A22 highway.



Calibration with static measurement station

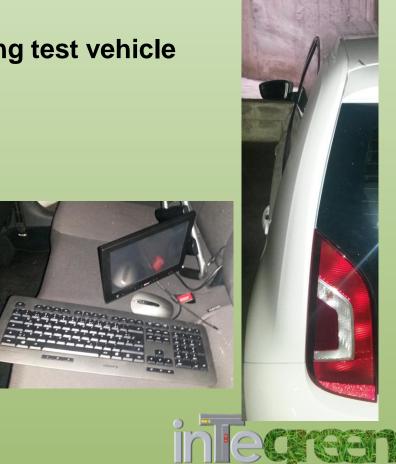
- Comfortable behavior in
 static conditions, if
 compared to reference air
 pollution stations.
- More tests are needed in order to improve the compromise between fast and accurate measurements capability



Joint component test session

Results: identification of minor errors in the communication chain, improvement of XFCD data analyzer, suggestion for operative application and maintenance of mobile system units, data visualization output test results

New compact Mobile INTEGREEN System



• Mounting on the bolzano car sharing test vehicle

 Measurement results with the Mobile System 23/06/2014

Summary

Summary

- Ad-hoc design of traffic and environmental monitoring unit
- Air-guide and air flow control, fast measurement
- Real-time data transmission to INTEGREEN server
- Portable test system for generic vehicle use
- Test on car sharing vehicle and SASA bus planned
- Miniaturisation

